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end of this document.

Full name: .......................................................... Student ID: .........................................................

This work is licensed under Creative Commons Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)
https://creativecommons.org/licenses/by-sa/4.0/ by Elisabetta Chicca, Tesse Tiemens, Ole Richter,
Hugh Greatorex (c) University of Groningen 2023.
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Problem 1 (17 points)

Figure 1: Resistor network.

Consider the circuit in Figure 1 and the related parameters: R1 = 2 kΩ, R2 = 2 kΩ, R3 = 2 kΩ,
R4 = 6 kΩ, R5 = 3 kΩ, V1 = 7.5 V , I1 = 2.5 mA.

(a) (4 points) Using the parameters provided above, calculate the equivalent resistance Req seen by
RL (consider RL an open circuit and calculate the resistance between the two open terminals).

(b) (10 points) Using the parameters provided above, calculate the Norton short circuit current Ino
seen by RL.

(c) (1 points) Draw the Norton equivalent circuit including RL as load.

(d) (2 points) Given that RL = 10kΩ, calculate the current flowing through and the voltage across
the load resistance RL. If you do not have values for Ino and Req calculated from the previous
questions use the following incorrect values: Ino = 1 mA and Req = 2 kΩ.
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Problem 1 - Solution
Point a)
If we replace the generators with their internal resistors, (that means the voltage source acts as a short
circuit and the current source acts as an open circuit, see Fig. 2) we see that the equivalent resistance
seen by RL is:

Req = R3 +R1//(R2 +R4//R5)

= R3 +R1//

(
R2 +

R4R5

R4 +R5

)
= R3 +

R1R2 +
R1R4R5

R4+R5

R1 +R2 +
R4R5

R4+R5

= R3 +
R1(R2R4 +R2R5 +R4R5)

(R1 +R2)(R4 +R5) +R4R5

= 2kΩ+
2(12 + 6 + 18)

4 · 9 + 18
kΩ = (2 +

4

3
)kΩ

So Req = 10
3 kΩ.

Figure 2: Circuit from question 1 redrawn with the sources removed to find the equivalent resistance

Point b)
Solution I

The equivalent generator can be calculated using the superposition principle. Replacing the current
source with an open circuit, we can redraw as in Fig. 3. In order to now find ISCV , the contribution
to ISC from the voltage source, we first have to find the total current from the voltage source Itot. To
help with this, we define Ra = R2 +R3//R1 = 2kΩ+ 2//2kΩ = 3kΩ. This gives us

Itot =
V1

R4 +R5//Ra
=

7.5V
(6 + 3//3)kΩ = 1mA

We now recognize R5//Ra as an equal current divider, as well as R3//R1, such that ISCV = Itot/4 =
1
4mA.

Alternatively, the current divider formula can be used to find that

ISCV =
R5

Ra +R5

R1

R1 +R3

V1

R4 +R5//Ra
=

R5R1

(R3 +R1)(R5Ra +R4Ra +R4R5)
V1
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Figure 3: Norton equivalent current: part 1

which solves to the same thing.
To find the contribution from the current source, we replace the voltage source with a short-circuit,

as can be seen in Fig. 4. To find ISCI , we recognize that the current from I1 gets divided between the
left and right part of the circuit, so we define a resistance Rb to be the resistance of the left side of the
circuit, which is the same as Rb = Req −R3 = 4

3kΩ. We then use the current divider formula to find

ISCI = I1
Rb

R3 +Rb
= 7.5

4
3
10
3

mA = 0.4 · 2.5mA = 1mA

This puts our total ISC = 5
4mA

Figure 4: Norton equivalent current: part 2
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Solution II

R2

R1R3

R4

R5

V1

V2

V3

Figure 5: Norton equivalent current: method II, part 1

Alternatively, we can use voltage dividers to find ISCV . Starting with the voltage source, we replace
the current source with an open circuit, and redraw the circuit like in Figure 5. We now use the voltage
divider to find

V2 =
R5//(R1 +R2//R3)

R5//(R1 +R2//R3) +R4
V1 =

3k//3k

3k//3k + 6k
V1 =

3

15
V1

We can also find that
V3 =

R2//R3

R2//R3 +R1
V2 =

1k

1k + 2k
V2 =

1

3
V2

Then finally to find ISCV :

ISCV =
V3

R3
=

1

2k

1

3

3

15
V1 =

1

30k
7.5V =

1

4
mA

For the current source, we can redraw the circuit like in Figure 6, and find the total resistance to
be:

Rtot = R3//R1//(R2 +R5//R4) = 2k//2k//(2k + 3k//6k) = 1k//(2k + 2k) = 1k//4k =
4

5
kΩ

Then from there we calculate the total voltage: VR3
= 5

2 · 4
5 = 2V, from which we find

ISCI =
VR3

R3
=

2

2
= 1mA

This puts our total ISC = 5
4mA
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R1

R4R5

R2
I1 R3

Figure 6: Norton equivalent current: method II, part 2

Solution III

It is also possible to use nodal analysis to find ISC directly. For this, we define voltages V2 and V3,
as shown in Fig. 7. By using the fact that the voltage over R4 is V2 − V1, we can now set up the
equations:

V2 :
V2

R5
+

V2 − V1

R4
+

V2 − V3

R2
= 0

V3 :
V3 − V2

R2
+

V3

R3
+

V3

R1
= I1

Filling in the numbers and refactoring gives:

V2 :

(
1

2
+

1

3
+

1

6

)
V2 −

1

2
V3 =

1

6
· 7.5V

V3 : −1

2
V2 +

3

2
V3 = 2.5mA · 1kΩ = 2.5V

or

V2 : 6V2 − 3V3 = ·7.5V
V3 : −V2 + 3V3 = 5V

which solves for V3 as
15V3 = 7.5 + 6 · 5V ⇒ V3 =

5

2
V

so that we get
ISC =

V3

R3
=

5

4
mA
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Figure 7: Norton equivalent current: method III, nodal analysis

Point c)
We can use the answers from points a) and b) to redraw the circuit as shown in Fig. 8. The sources
and resistors (except for RL) have been replaced by a single current source in parallel with a single
resistor such that the voltage between the nodes around RL is equivalent to the original situation.

5
4mA

RLVL
10
3 kΩ

Figure 8: Norton equivalent circuit

Point d)
We once again use a current divider to find

IL = ISC
Req

Req +RL
=

5

4

10
3

10 + 10
3

=
5

4

10

10 + 30
=

5

16
mA

Alternatively:

VL = ISC RL//Req = ISC
RLReq

RL +Req

IL =
VL

RL

For provided values:
VL = 1 · 10 · 2

10 + 2
V =

20

12
V =

5

3
V

IL =
VL

RL
=

5

3

1

10
mA =

1

6
mA

Remarks
This question is comparable to the Top Problem from Week 2. The number and type of sources and
resistors is identical (1 voltage source and 1 current source, 4 resistors).
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Problem 2 (20 points)

Figure 9: RLC circuit.

Consider the circuit in Figure 9. Assume sinusoidal regime, ideal components and the following
parameters: C = 25 mF , L = 0.5 H, R = 1 Ω, RL = 5 Ω, ω0 = 20 rad s−1.

(a) (3 points) Without any calculation, but only reasoning about the behavior of each element in
the circuit (to be mentioned explicitely), describe the behavior of

H(ω) =
vout
iin

for low (ω → 0) and high (ω → ∞) frequencies.

(b) (11 points) Derive the transfer function H(ω). Using the parameters provided above, calculate
its value in ω0: H(ω0).

(c) (4 points) At what point is the amplitude of the output signal, Vout, maximum? Derive and
calculate the value of ω in rad s−1.

(d) (2 points) Taking RL to be a removable load, find the equivalent impedance of the supply circuit.
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Problem 2 - Solution
Point a)
For low frequencies (ω → 0 rad/s) the capacitor impedance ZC → ∞, while the inductor impedance
ZL → 0.
For high frequencies (ω → ∞ rad/s) the capacitor impedance ZC → 0, while the inductor impedance
ZL → ∞.
In both cases, the impedance of the three components in series Za = ZC +ZL +ZRL

→ ∞. Therefore
no current goes through the right branch, therefore vout = ioutRL → 0, therefore H(ω) → 0V A−1.

Point b)
Method I

Recognise that we have a current divider here. Denote the impedance of the three parallel components
as

Za = ZC + ZL + ZRL

By the current divider equation, the current through the right branch is then

iout = iin
R

R+ Za

and so the transfer function is given by

H(ω) = vout/iin

= RLiout/iin

= RL
R

R+ Za

=
RRL

R+ ZC + ZL + ZRL

=
RRL

R+RL + (jωC)−1 + jωL

=
RRL

R+RL + j[ωL− 1
ωC ]

We can now substitute in the various parameters, giving

H(ω) =
5

6 + j[0.5ω − 40
ω ]

Finally, for ω0, we get

H(ω0) =
5

6 + j[10− 40
20 ]

=
5

6 + 8j
= 0.3− 0.4j V A−1

and correct units are required to be awarded full marks.

Method II

Alternatively, we can find the voltage over the current source, vin to be (where Za is the same as
described above):

vin = iin(R//Za) = iin
RZa

R+ Za

We then recognize that RL forms a voltage divider together with ZC and ZL to get:

vout = vin
RL

Za
= iin

RZa

R+ Za

RL

Za
= iin

RRL

R+ Za

from which we can continue as described above in Method I.
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Point c)
To maximise |H(ω)| w.r.t ω, we use our previous expression for H(ω), recognising that it is maximised
when the imaginary part of the denominator equals 0, so when:

ωL =
1

ωC

ω2 =
1

LC

ω =
1√
LC

= 4
√
5 rad s−1 ≈ 8.94 rad s−1

and of course units are necessary for full marks.

Point d)
As with Northon/Thévenin equivalent circuits, we set iin to be open circuit. Then from RL’s perspec-
tive, the circuit is just the three remaining components in series:

Req(ω) = R+ ZC + ZL = R+ j
(
ωL− 1

ωC

)
= 1 + j(0.5ω +

40

ω
)

or, if taken at ω0 (due to ambiguity in the question, both were counted as correct):

Req(ω0) = 1 + 8j Ω

Remarks
This question is in complexity and type of tasks comparable to top problem from week 3. Finding
limits by inspection and only reasoning as in subquestion a) was extensively practiced during the
lectures. For more info see Electronics: a Systems Approach chapter 6.6 or Electronics for Physicists
chapter 3.
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Problem 3 (15 points)

i

Vout

R3

R2

R1

V2

V1

Figure 10: Circuit with an ideal op-amp.

C1

Vout
R2

R1

V2

V1

Figure 11: Circuit with an ideal op-amp and capacitor.

Consider the circuit in Figure 10. Keep your solutions in terms of the variables defined unless
stated otherwise.

(a) (1 points) What is the current i? Give a reason for your answer.

(b) (6 points) V1 and V2 are constant DC voltages. Find an expression for the output voltage Vout.

Now consider the circuit in Figure 11. Again, keep your solutions in terms of the variables defined
unless stated otherwise.

(c) (8 points) Find an expression for Vout given that V1 and V2 are AC inputs. What is Vout for
ω → ∞ ? How can the same conclusion be reached without having an expression for Vout?
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Problem 3 - Solution
Part a)
i = 0. The input current in an ideal op-amp is so small that it is assumed to be zero.

Part b)
Method I

i

Vout

R3

R2

R1

V2

V1

iR3

iR1

iR2

Figure 12: Current definitions for KCL for solving the op-amp circuit

Since the op-amp is ideal, we can use fact that V− = V+ = 0V. Now, since i = 0, we can use
Kirchoff’s current law (KCL) to find (see Fig. 12 for the current definitions used):

iR3
= iR1

+ iR2

0− Vout
R3

=
V1 − 0

R1
+

V2 − 0

R2

Vout = −R3(
V1

R1
+

V2

R2
)

From which we see that this op-amp is a summing amplifier.

Alternatively, you could start with superposition, recognizing that the total Vout is the sum of the
contributions from V1 and V2. To find the contribution from V1, we set V2 = 0, meaning that the
current iR2 = 0 as V− = V+ = 0 too. Then because iR2 = 0, we can use a voltage divider1:

V− = 0 = V1 + (Vout − V1)
R1

R1 +R3

−V1 = (Vout − V1)
R1

R1 +R3

Vout = −R1 +R3

R1
V1 + V1 = −R3

R1
V1

Similarly when we set V1 = 0, the output current would be

Vout = −R3

R2
V2

Summing these two solutions, the output voltage is found to be

Vout = −R3

(
V1

R1
+

V2

R2

)
1it’s also possible to just use KCL here, but for the purpose of demonstration we use the voltage divider
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Part c)
By writing C1 as a complex impedance ZC1 = 1

jωC1
, we can solve this question the same as we did for

part b). First we recognize again that V+ = V− = 0, and that the current into the − terminal of the
op-amp is 0A. We then use KCL to find:

iC1
= iR1

+ iR2

0− Vout
ZC1

=
V1 − 0

R1
+

V2 − 0

R2

Vout = −ZC1(
V1

R1
+

V2

R2
)

Vout =
j

ωC1
(
V1

R1
+

V2

R2
)

As we now take the limit ω → ∞ we can see that Vout → 0 This can also be seen by realising that the
capacitor becomes essentially a short-circuit in the limit ω → ∞. This connects Vout to V−, which is
a virtual ground, equal to V+ = 0.

Remarks
The use of KCL and complex impedances for op-amp circuits was used in problem 10.7 from Elec-
tronics for Physicists, from the tutorial in week 5. Summing amplifiers are discussed in chapter 16.4.4
(page 287) of Electronics a Signals Approach, and Chapter 10, example 5, page 204 of Electronics for
Physicists, and the general concept of superposition principle for op-amps was discussed in the top
problem of week 4.
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Problem 4 (18 Points)
Legend: A ·B = AND, A+B = OR, A = NOT A

(a) (9 points) Write the Boolean expression implemented by the circuit in Fig. 13 and fill in the
Karnaugh map on the right side of the figure.
Using the Karnaugh map, derive an optimised logic expression to implement the above cir-
cuit function. No need to draw the resulting circuit.

A

B

C

D

A

B

C

D

y

BADC

5

Figure 13: Logic circuit and Karnaugh map to be filled out.

(b) (9 points) Convert the following Boolean expression

Y = (A ·B · (C +D)) + (A · (B + C))

to NOR logic using Boolean algebra. The final expression must require only 2-input NOR
gates (NOR2), but there is no constrain on the number of gates needed. Draw the circuit to
implement the combinational logic corresponding to the derived Boolean expression.
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Problem 4 - Solution
Point a)
The Karnaugh map is drawn with gray code, so only one digit changes per step, with 2 variables
vertical and 2 horizontal. Each of the given terms (e. g. D · C · A · B) appears as a one in the map
(e.g. in the cell with B = C = D = 0 and A = 1). All other positions are filled with a zero. Mark
all groups of 16 (all variables reduced), 8 (3 variables reduced), 4 (two variables reduced), 2 (one
variable reduced) that you can find, individual positions can be used in multiple groups. Remove any
redundant group. Groups can be formed over the edge.

y = (A ·B ·C ·D) + (A ·B ·C ·D) + (A ·B ·C ·D) + (A ·B ·C ·D) + (A ·B ·C ·D) + (A ·B ·C ·D)

BADC
00 01 11 10

00

01

11

10

1 11

1 11

0 0 00

0

0 0 00

0

y = (green) + (red)

y = (B · C) + (A · C)

A ·B = AND

A+B = OR

A = NOT A

Remarks

The Karnaugh map for this question is comparable to the one provided in the solution of the top
problem of Week 8, as it is the task to find the reduced formula.

Point b)
Y = (A ·B · (C +D)) + (A · (B + C))

The De Morgan’s laws can be used to turn all gates into 2-input NOR gates. First change the formula
to only have 2-input gates

y = ((A ·B) · (C +D)) + (A · (B + C))

Introduce double inversion to the inner most 2-input AND expressions:

y = ((A ·B) · (C +D)) + (A · (B + C))

Swap gates from 2-input AND gates to 2-input NOR gates by inverting the inputs:

y = ((A+B) · (C +D)) + (A · (B + C))
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Introduce double inversion to the remaining 2-input AND expressions:

y = ((A+B) · (C +D)) + (A · (B + C))

Swap gates from 2-input AND gates to 2-input NOR gates by inverting the inputs:

y = ((A+B) + (C +D)) + (A+ (B + C))

Remove obsolete double inversion on single variables:

y = ((A+B) + (C +D)) + (A+ (B + C))

Add double inversion to the outer 2-input OR gate:

y = ((A+B) + (C +D)) + (A+ (B + C))

Draw the circuit, use a NOR2 with both inputs connected together to implement a NOT gate. The
resulting circuit is shown in Fig. 14.

A

B

D
C

y

Figure 14: The 2-input NOR circuit.

Remarks

The use of the Morgan’s laws for the translation of arbitrary logic functions to NAND and NOR logic
was extensively covered in the lecture (both in graphical and algebraic form). Top problem from Week
7 has covered a similar problem, providing more practice with Boolean algebra operations.
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Electronics and Signal Processing - Formula Sheet
Ohm’s law: V = ZI Capacitors: V = Q

C = 1
C

∫
I dt Inductors: V = L dI

dt

Complex impedance: ZR = R , ZL = jωL , ZC = 1
jωC Reactance: X = Im(Z)

Quality ratio : Q = f0
B (for bandwidth B and resonance frequency f0)

Root-mean-square voltage of sinusoidal signal = 0.707 of amplitude

Voltage gain: Av = Vo

Vi
dB voltage gain = 20 log10(Vo

Vi
)

Closed loop gain: G = A
1+AB , where A is the forward gain and B is the feedback gain.

Output voltage of an OpAmp: Vout = A (V+ − V−)

Characteristic impedance of a cable: Zeq =
√

r
2ωc (1− j) (RC cable), Zeq =

√
l
c (LC cable)

Speed of signal in a cable: v = 1√
lc

(LC cable)

Effective impedance seen by a source connected to a cable (length Λ, Z0) and a load with impedance
Z: Zeff = Z0

Z−jZ0tan(kΛ)
Z0−jZtan(kΛ) , where k = 2π

λ = ω
√
lc

Boolean Algebra

• Commutative laws: AB = BA , A+B = B +A

• Distributive laws: A(B + C) = AB +AC , A+BC = (A+B)(A+ C)

• Associative laws: A(BC) = (AB)C , A+ (B + C) = (A+B) + C

• Absorption law: A+AB = A (A+B) = A

• De Morgan’s laws: A+B = A ·B , AB = A+B

• Other: A+A ·B = A+B , A (A+B) = AB

Complex Numbers Algebra

|z| =
√

Re(z)2 + Im(z)2

ejϕ = cos(ϕ) + j sin(ϕ) =⇒ ej
π
2 = j , e−j π

2 = −j , ejπ = −1 = j2

cos(θ) = ejθ+e−jθ

2 sin(θ) = ejθ−e−jθ

2j
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